Peristaltic transport of a pulsatile flow for a particle-fluid suspension through a annular region: Application of a clot blood model

نویسندگان

  • Khaled S. Mekheimer
  • Mohamed S. Mohamed
چکیده

A serious pathological condition is encountered when some blood constituents deposited on the blood vessels get detached from the wall, join the blood stream again and form a clot. The pulsatile flow for peristaltic transport of a fluid with suspended particles may be considered as a mathematical model for the blood flow. We study this model in a annular region with a clot inside it, under low Reynolds number and long wavelength approximation. We model a small artery as a tube having a sinusoidal wave travelling down its wall with a constant velocity c and a clot model inside it. Closed form solutions are obtained for the fluid/particle velocity , as well as the stream function, and the pressure gradient. These solutions contain new additional parameters, namely, δ, the height of the clot, β, the pulsating number and C, the suspension parameter, and the wave amplitude b. The pressure rise and friction force on the outer tube have been discussed for various values of the physical parameters of interest. Finally, the trapping phenomenon is illustrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat and Mass Transfer Analysis on MHD Peristaltic Prandtl Fluid Model through a Tapered Channel with Thermal Radiation

This paper deals with a theoretical investigation of heat and mass transfer with thermal radiation analysis on hydromagnetic peristaltic Prandtl fluid model with porous medium through an asymmetric tapered vertical channel under the influence of gravity field. Analytical results are found for the velocity, pressure gradient, pressure rise, frictional force, temperature and concentration. The in...

متن کامل

PERFORMANCE MODEL AND ANALYSIS OF BLOOD FLOW IN SMALL VESSELS WITH MAGNETIC EFFECTS

In this paper consider a two-fluid model consisting of a core region of suspension of all the erythrocytes (particles) in plasma (fluid) assumed to be a particle-fluid mixture and a peripheral layer of cell-free plasma (Newtonian fluid), has been proposed to represent blood flow in small diameter tubes with effects of magnetic. The analytical results obtained in the proposed model for effective...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Peristaltic Transport of a Herschel-bulkley Fluid in Contact with a Newtonian Fluid

Peristaltic transport of Herschel-Bulkley fluid in contact with a Newtonian fluid in a channel is investigated for its various applications to flows with physiological fluids (blood, chyme, intrauterine fluid, etc.). The primary application is when blood flows through small vessels; blood has a peripheral layer of plasma and a core region of suspension of all the erythrocytes. That is, in the m...

متن کامل

MHD thermal radiation and chemical reaction effects with peristaltic transport of the eyring-powell fluid through a porous medium

In this paper, we analyze the thermal radiation and chemical reaction impacts on MHD peristaltic motion of the Eyring-Powell fluid through a porous medium in a channel with compliant walls under slip conditions for velocity, temperature, and concentration. Assumptions of a long wave length and low Reynolds number are considered. The modeled equations are computed by using the perturbation metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014